Fuzzy multidimensional scaling
نویسندگان
چکیده
Multidimensional scaling (MDS) is a data analysis technique for representing measurements of (dis)similarity among pairs of objects as distances between points in a low-dimensional space. MDS methods differ mainly according to the distance model used to scale the proximities. The most usual model is the Euclidean one, although a spherical model is often preferred to represent correlation measurements. These two distance models are extended to the case where dissimilarities are expressed as intervals or fuzzy numbers. Each object is then no longer represented by a point but by a crisp or a fuzzy region in the chosen space. To determine these regions, two algorithms are proposed and illustrated using typical datasets. Experiments demonstrate the ability of the methods to represent both the structure and the vagueness of dissimilarity measurements.
منابع مشابه
FALSCAL: A fuzzy multidimensional scaling algorithm
The conventionally adopted Alternating Least squares SCALing (ALSCAL) procedure of multidimensional scaling (MDS) is a valuable mathematical scheme for analyzing data in areas where organized concepts and underlying dimensions are inadequately defined or developed. Fuzzy set theory (FST) attempts to formulate human reasoning and perceptions, therefore targeting problems in areas where human fac...
متن کاملMultidimensional scaling of fuzzy dissimilarity data
Multidimensional scaling is a well-known technique for representing measurements of dissimilarity among objects as distances between points in a pdimensional space. In this paper, this method is extended to the case where dissimilarities are expressed as intervals or fuzzy numbers. Each object is then no longer represented by a point but by a crisp or a fuzzy region. To determine these regions,...
متن کاملFuzzy Dissimilarity based Multidimensional Scaling and its Application to Collaborative Learning Data
متن کامل
Using Multidimensional Scaling for Assessment Economic Development of Regions
Addressing socio-economic development issues are strategic and most important for any country. Multidimensional statistical analysis methods, including comprehensive index assessment, have been successfully used to address this challenge, but they donchr('39')t cover all aspects of development, leaving some gap in the development of multidimensional metrics. The purpose of the study is to const...
متن کاملFuzzy Sets and Vague Environments
In this paper we propose a natural approach to handle imprecise numbers as they arise for example from measurements. Fuzzy sets turn out to be a canonical representation for such imprecise numbers that are induced by taking diierent tolerance or error bounds into account. Fuzzy sets are induced by scaling factors that describe the magnitude of the imprecision. On the other, the scaling factors ...
متن کاملCombining fuzzy AHP with MDS in identifying the preference similarity of alternatives
Multidimensional scaling (MDS) analysis is a dimension-reduction technique that is used to estimate the coordinates of a set of objects. However, not every criterion used in multidimensional scaling is equally and precisely weighted in the real world. To address this issue, we use fuzzy analytic hierarchy process (FAHP) to determine the weighting of subjective/perceptive judgments for each crit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2006